Last part: Putting it all together

Define project

Define question: “Find genes that do XYZ”
Define biological model system

Define assays to read out phenotypes of interest

Primary screen — feasibility and execution

Optimize model system, assay(s); positive and negative controls
Select gene set to interrogate |

Execute pilot and primary screen — select hits

Follow up on interesting genes/pathways

Confirm assay result
Confirm target gene specificity — multiple RNAi reagents, target KD
Elaborate the biological effects,

e.g. mechanism generality/context, biomedical sig?

oooooooooooooo




Focus on follow-up ‘Figures 3-7’
* Project timelines

e Paths to ‘validation’ — what does validation
mean?

* More detailed follow-up studies



Timelines: be realistic!!

A typical project lasts 18-36 months - the screen itself taking up a small percentage of the time.

Most time-consuming part of a screening project, by far, is validation and follow up after the screen.

Assay Development Validation

2-4 months 0.5—-2 months 2—6 months 12-24 months



Real examples

Screen chromatin regulators in 2 cell lines

Assay Dev DND41 and

DND41R Screen DND41 Screen DND41R Paper in submission
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Screen ‘validation’



Paths to ‘validation’ — what does ‘validation’ mean?
....two kinds of things to validate:

The phenotype The gene(s)

e Repeat original assay * Is phenotype due to expected

« In different ‘orthogonal’ VALIDATION effect of the shRNA or ORF?
assay(s) for phenotype e.g. discount off-target effects,

* In different cell model systems non-specific effects

: FOLLOW-UP :

Gene dose v. phenotype,
Enzymatic activity, structural feature?
Isoforms, protein modifications

Mechanism, flesh-out process,
Relate to disease, etc.



“On-Target” confirmation for RNAI hits

-> How to confirm that phenotype is due to target gene
knockdown?

Multiple effective shRNA sequences!

Control Gene #1

shBUB1B-3346

Gene #2 Gene #3

shMYO3A-4214

Moffat et. al. Cell 2006

Complex phenotype characterization

- High-content CEACS
(Image-based) -

- GE-HTS




“On-Target” confirmation for RNAI hits

-> How to confirm that phenotype is due to target gene
knockdown?
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“On-Target” confirmation for RNAI hits

-> How to confirm that phenotype is due to target gene
knockdown?

Perturb gene in more than one way

RNAI v. Overexpression

DLG5 knockdown increases cell migration.
— DLG5 overexpression decreases cell migration

3 | '
RNAi v. Targeted small molecule OF

shRSK1 blocks shDLG5-induced cell migration
RSK inhibitor (BI-D1870) also blocks shDLG5-induced cell migration




“On-Target” confirmation for RNAI hits

-> How to confirm that phenotype is due to target gene
knockdown?

1. Require multiple shRNAs for same gene to induce same phenotype. Obtain more
shRNAs, siRNAs if needed.

2. Expand phenotypic characterization to show detailed agreement among hairpins
targeting same hit gene (see example)

3. Determine if knockdown of target gene correlates with phenotype across the
multiple hairpins...helpful when true, but not always true.

4. Perturb gene in other ways (small molecule, overexpression, genome
engineering).

5. Perturb known ‘relatives’ of the hit gene if known (e.g. genes in same pathway).

6. cDNA rescue



Paths to ‘follow — up’:
What does it mean to ‘learn a gene’s function’?
What does it mean to ‘define the genes invovled in a process’

The phenotype

* Repeat original assay

* Different ‘orthogonal’ assay(s) for phenotype

* Different cell model systems

\ 4

Detailed nature of the process
Context? Tissue types, in vivo
What defines/governs process?

- more players, further assays
Mechanism’ — biochemistry
Relationship to disease, etc.

Cross to other data sets

FOLLOW-UP

The gene(s)

VALIDATION | » Is phenotype due to expected effect of the

shRNA or ORF?

e.g. discount off-target effects, non-specific effects

\ 2

Detailed nature of the protein(s) and
the proximal effects:

Gene dose v. phenotype,
Enzymatic activity, structural feature?
Isoforms, protein modifications

Immediate substrates, binding partners

The LONGEST part of a screening project!




Putting it all together: Project Examples

Emphasis on what'’s in Figures 3-7



A pooled screen for cell migration

Gromek Smolen, Daniel Haber

Smolen et. al., Genes & Dev. 2010



Endogenous negative regulators of cell migration
— a pooled screen approach

Gromek Smolen
Daniel Haber Lab

CELL MIGRATION

Roles in normal development:
patterning during gastrulation
neural crest migration
heart valve formation...

Roles in disease:
congenital birth defects
cancer metastasis...

Determinants of cell migration :
morphology
ECM architecture
cytoskeleton
gene regulatory network...

Breast Cancer: MCF10A cells
Non-migratory cells

control migratory
population population
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control
population

migratory
population

shRNA
library

PCR amplification of hairpins
= —

microarray analysis of hairpin populations

163shRNAs*

shRNA phenotype confirmation
63shRNAs*

additional shRNAs for gene
candidates

1695hRNAs*

MCF10A expression
gPCR validation

31 hit genes

Regulators of Cell Migration Pooled Screen: Hit Gene Confirmation

SCREEN SUMMARY

55,000 shRNA constructs targeting 11,000 genes

Candidate selection criteria:

- top 1000 most enriched shRNAs in each replicate
- shRNAs enriched in at least 2 replicates

- genes with at least 2 non-overlapping shRNAs

163 shRNAs identified in the screen; 63 retested positive (39%)

270 additional shRNAs for gene candidate tested —
total 433 shRNAs; 106 positive (24%).

AVAVANY RN

31/34 (91%) of candidate genes are expressed in MCF10A cells
and show evidence of knockdown




Representative migration phenotypes

Diverse gene annotations,
Test one at a time: strong hits!

non-target
control representative phenotypes

Migration legend: () <10 (no migration) (™ 30-100 (P 100-250 @ 250-750 @ >750

Gromek Smolen
Daniel Haber Lab



EMT marker analysis

Several hits increase fibronectin but produce inconsistent reduction of epithelial markers

mesen.

epith.
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Gromek Smolen
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DLG5 knockdown increases cell migration

DLG: novel migration gene, downregulated upon YAP-induced migration
NT 2175 4686

| DLG5

B-actin

Gromek Smolen
Daniel Haber Lab



DLG5 overexpression decreases cell migration

Use MDA-MB-231

Migratory breast cancer line MDA-MB-231
§ Ty
MCF10A  § 9
— >
— ' DLG5
- e | [ achn

13503 = 397

[1067 =105

Gromek Smolen
Daniel Haber Lab



DLG5 expression in breast tumors

relative DLG5 expression
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More mechanism??

Knockdown of DLG5 = Use phospho-Ab array to monitor
sighaling pathways

Prominent increases in phosphorylation of - i ® ERK1 - T202/¥204
88 @ ERK2 - T185/Y187
ERK1 and ERK2, & el s
a downstream kinase, RSK1, 4686 @ AKT1 - S473
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Mechanistic convergence of 31 migration hit genes >

All increase phospho-ERK1/2
RSK inhibitor (BI-D1870) blocks migration induced

by all 31 gene knockdowns
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Integrated functional genomic approach to cancer:

Oncogene discovery in colon cancer

WNT signaling activation in nearly all colon cancer

1. APC loss (85% of colon cancers)

2. GOF mutations in -catenin (5-10% )

Ron Firestein, Bill Hahn
Nature Sept. 2008



B-catenin assay and cell viability assay — Two phenotypes

1000 genes — 5,000 shRNAs - 95% of all human kinases

3,

cell viability assay

1000 2000

Cell Proliferation (Z score)

5]

3000 4000 5000

shRNAs tested

Essential genes

B-catenin transcription activation assay

1000 2000

Nomalized TOPFLASH (Z score)

3000 4000 5000
shRNAs tested

So Young Kim
lan Dunn

Proliferation screen

B-catenin dependent cells
(HCT116)

Proliferation Screen B-Catenin Screen

166 genes
genes

CDK8 MLLT7
3 PLK4
CSNK1E  TAOK1
DKC1 ZAK
MAP3K14

(DLD-1)

Ron Firestein

B-catenin screen
B-catenin dependent cells

Firestein, Hahn



Compare to 3" dataset - very different type

RNA:I:
3-catenin activity

RNA.I: proliferation/viability Amplified in colon
tumors



CDKS8 is amplified in colon cancers
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Identification of Minimal Region of Copy Gain at 13q12
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Novel oncogene CDK8

SNP analysis of amplified genes
in colon cancer

shRNA ' tsthNA
interference Inter eren:e
screen screen o

of cell viability B-catenin activity



CDK8 overexpression drives transformation

CDK8 expression Loss of Contact Inhibition Assay
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CDK8 amplification promotes tumorgenicity via the pathway of
p-catenin transcription activation Firestein, Hahn



Drug resistance in BRAF-mutant melanoma

LETTER

d0i:10.1038/nature09627

COT drives resistance to RAF inhibition through
MAP kinase pathway reactivation

Cory M. Johannessen'-?*, Jesse S. Boehm'#, So Young Kim"*7+, Sapana R. Thomas'?, Leslie Wardwell’, Laura A. Johnson'?,
Caroline M. Emery”, Nicolas Stransky’, Alexandria P. Cogdill*, Jordi Barretina"**, Giordano Caponigro®, Haley Hieronymus' 7.8
Ryan R. Murray™*'% Kourosh Salehi-Ashtiani**'%, David E. Hill**'°, Marc Vida***'°, Jean J. Zhao™"', Xiaoping Yang',

Ozan Alkan', Sungjoon Kim"?, Jennifer L. Harris", Christopher J. Wilson®, Vic E. Myer®, Peter M. Finan®, David E. Root’,
Thomas M. Roberts’, Todd Golub™*#, Keith T. Flaherty*, Reinhard Dummer®, Barbara L. Weber®, William R. Sellers®,

Robert Schlegel®, Jennifer A. Wargo®, William C. Hahn'*3 & Levi A. Garraway'+%*

Cory Johannessen, Levi Garraway
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Resistance genes via ORF based rescue screens

. : Phenotype
Cellular phenotype Ectopic expression
P . _y P P p =) roScCUE
(drug sensitivity) of human genes :
(resistance)
Rescue Screen:
Resistance to PLX4720 Sensitive CE” Line
A375:B-I3AFV6°°E
Annotated — \\—- ;
Kinases M Carbohydrate Kinases (28) e

B Nucleotide Kinases (39)
Receptor Ser/Thr Kinase (26)

M Receptor Tyr Kinase (53)

M Ser/Thr Kinase (250) —
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Lipid Kinases (23)

CCSB/Broad Institute w Protein Kinase (80)

Kinase ORF Collection  Other Kinases (60)

(597)

(788)

Phenotypic Rescue
of 1 uM PLX4720
(relative cell number)




A screen for kinases that bypass B-RAF inhibition
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COT and C-RAF: candidate resistance kinases

Prioritization Screen
(2 cell lines, 8-point Gl,)

C-RAF/RAF1
Rank | Gene .. . .
® Heterodimerizes with BRAF to activate
1 COoT the canonical MAPK signaling cassette
2 C-RAF e Has been suggested to mediate resistance
3 CRKL to RAF inhibition.
4 FGR
5 |PRKCE COT/TPL2/MAP3KS
6 PRKCH e Like B- & C-RAF, COT is a MAP3K
7 ERBB2 * Has been shown to directly phosphorylate
8 AXL MEK1, activating ERK
9 PAK3 * Not linked to melanoma




COT and C-RAF re-activate the MAPK pathway




ldentification of model systems to interrogate COT-mediated
resistance

Candidate kinases

Expression e . . . Copy number
1 Drug Sensitivity Mutation analysis .
profiling analysis

4

Model Cell Systems




Identify COT-amplified BRAFV600E mutant cell lines

Cancer cell lines: 752

\

SNP/Oncomap: 534

\

B-RAFV600E: 38

\

B-RAFVY600E + COT copy
no. gains: 2

B-RAFV600E Cancer Cell

Lines

COT Non-amplified  AMP

VINC

A375
SKMEL28
SKMELS
COLO-679
MALME 3M
OUMS-23
RPMI-7951

1-467
~30-467




COT amplification predicts resistance in BRAFV600E
cancer cell lines

B-RAFVY60°E Cancer Cell Lines

12+

=
o
1

PLX4720 GI50 (uM)




A mouse In VIVO Screen

Rich Possemato, David Sabatini
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[Cells in a tumor exist in a poorly understood environment ]
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Outline of in vivo pooled screening strategy identifying

PHGDH as essential for tumorigenesis.

a
/ 2,752 metabolic enzymes and
small molecule transporter genes

198 associated with 239 upregulated

L

\_ 218 associated with stemness
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For five hit genes (PHGDH, GMPS, SLC16A3,
PYCR1 and VDAC1), two scoring shRNAs were
tested for their effects on tumour formation.
Each of these shRNAs suppressed expression
of their targets in MCF10DCIS.com cells and
reduced tumour-forming capacity. (Fig. 1e
and Supplementary Fig. 2c). For reasons
discussed later, PHGDH was of particular
interest.

R Possemato et al. Nature 000, 1-5 (2011) doi:10.1038/nature10350
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Genomic amplifications of PHGDH in cancer and association of
PHGDH expression with aggressive breast cancer markers.

To prioritize genes for follow-up
studies we consulted a recently
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Cell lines with elevated PHGDH expression have increased serine
biosynthetic pathway activity and are sensitive to PHGDH suppression.
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To investigate whether
PHGDH suppression can
affect the growth of
established tumours, we
generated an inducible
shRNA that, upon doxycycline
treatment, reduced PHGDH
protein levels in MDA-
MB-468 cells.

(different cells)



Suppression of PHGDH results in a deficiency
in anaplerosis of glutamine to aKG.
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However, PHGDH suppression inhibited
proliferation even in cells growing in media
containing normal levels of extracellular

serine, and supplementation with Uh-oh
additional serine or a cell-permeable
methyl-serine-ester did not blunt the

effects of the PHGDH suppression

In fact, of the major metabolites

measured, aKG was the one with the

most significant and largest change Ah, maybe ok...
upon PHGDH suppression, whereas Knock down PSAT1
serine levels were not significantly

changed

R Possemato et al. Nature 000, 1-5 (2011) doi:10.1038/nature10350



Paths to ‘follow — up’:
What does it mean to ‘learn a gene’s function’?
What does it mean to ‘define the genes invovled in a process’

The phenotype

* Repeat original assay

* Different ‘orthogonal’ assay(s) for phenotype

* Different cell model systems

\ 4

Detailed nature of the process
Context? Tissue types, in vivo
What defines/governs process?

- more players, further assays
Mechanism’ — biochemistry
Relationship to disease, etc.

Cross to other data

FOLLOW-UP

The gene(s)

VALIDATION | » Is phenotype due to expected effect of the

shRNA or ORF?

e.g. discount off-target effects, non-specific effects

\ 2

Detailed nature of the protein(s) and
the proximal effects:

Gene dose v. phenotype,
Enzymatic activity, structural feature?
Isoforms, protein modifications

Immediate substrates, binding partners

The LONGEST part of a screening project!




Some interesting quotes.....

QUESTIONING VALIDITY OF MODEL AND/OR READOUT

"In this highly artificial model, the authors identify potential enhancers and inhibitors of the loss of ASSAY staining when cells
overexpressing GENE are ....TREATED WITH X. To my knowledge no one has shown that this phenomenon actually occurs in vivo with
endogenous VERSION OF TREATMENT....”

"The authors have mainly used indirect measures for PHENOTYPE. All these phenotypes could have alternative explanations. Could the
authors perform a TYPEOFASSAY assay to directly measure PHENOTYPE in CELL TYPE lines....?"

Since they use a model of GENEX overexpression for their screen it is difficult to know whether this modifier (HIT GENE) regulates
endogenous GENEX. Moreover the CELLS PLUS TREATMENT model system utilized probably has little relevance to DISEASE

pathogenesis.”

"The study of more specific markers of PHENOTYPE that are exquisitely more sensitive to PERTURBATION may be informative."

NOT ENOUGH FOLLOW-UP

".... the mechanistic part of this study (biochemical and genetic follow up) is not sufficient to unequivocally support the presented
hypothesis".

"The molecular mechanisms of action of these genes in PHENOTYPE are tested only very superficially and not in sufficient depth for a
journal like JOURNAL. A strong focus on PHENOTYPE and no ASSOCIATED PHENOTYPE data obtained by quantitative techniques (such as
ASSAYS) leaves the reader surprised and unsatisfied.

"....they chose to pursue just one hit, GENE, in much detail. They have now provided conclusive evidence of GENE's functional
involvement in selective autophagy, but they have not yet understood its mechanistic role. In this light, the present contribution of this

work is to generate a potentially valuable but largely unproven resource of selective PHENOTYPE genes, and to validate conclusively that
ONE GENE is involved in PHENOTYPE while leaving its mechanistic role in this process unresolved."

NOT ENOUGH VALIDATION

".... the authors should dissipate any potential concern on off target effects by performing a phenotype rescue experiment with RNAi-
resistant versions of the inactivated genes.”

"The bioinformatics analysis is interesting, but speculative.”

"...the authors select one of the genes, GENE, for in-depth analysis. ..... it is difficult to draw any conclusions about the involvement of
the other (HIT) genes in PHENOTYPE based on this single example."



. pefineproject OCTEEN Projects

. J * Define question: “Find genes that do XYZ”
* Define biological model system
» Define assays to read out phenotypes of interest

Primary screen — feasibility and execution

* Optimize model system, assay(s); positive and negative controls

to the cells?

* Select gene set to interrogate
Execute pilot and primary screen — select hits

What happens

Follow up on interesting genes/pathways

e Confirm assay result
* Confirm target gene specificity — multiple RNAi reagents, target KD
» Elaborate the biological effects,

e.g. mechanism generality/context, biomedical sig?

Good luck! Come with questions.



