Optimizing and executing shRNA and ORF screens

Arrayed screens & pooled screens for RNAi and ORF screens

Arrayed:

Multiwell plates, one shRNA per well

Pooled:

Each cell in mixture gets different shRNA or ORF

Some issues are similar, some different: we'll start with arrayed screens

Typical timeline for arrayed lentiviral shRNA/ORF screens

Day 0
Seed cells

Day 1
Infect with lentivirus

Day 2
Selection

Day 4Endpoint with Conditions

Conditions

Read plates

Assay Development: Many variables - many may matter!

Set up model
e.g. seed cells
and prepare for
perturbation

Introduce genetic perturbation
e.g. infect with lentiviruses carrying shRNAs or ORFs

Model the biology

e.g. - challenge with a virus

- stimulate with a cytokine
- treat with chemotherapeutic

Cell numbers, culture conditions?

Infection conditions, timing?

Timeline, treatments, media changes, passaging?

Endpoint measurements
e.g. platereader, imaging, FACS

Reagents/protocols, instruments/settings, timeline

How to optimize many interdependent variables?

Ex. Just for a subset of infection condition variables below.....

HOW TO DO with finite time and effort?

Typical Series of Experiments to optimize a screen

- 1. Pick cells for screen development based on biology and logistics One or more for primary screen, others for follow-up
- 2. Seed them at 2-4 reasonable (guessed) densities (growth rate, time until endpoint...)

 Use this density to do initial optimization of infection, selection.

Optimize library infection conditions

Selection of infected cells

needed for subsequent experiments:

What's minimum puromycin that will kill un-protected, un-transduced cells? Zero virus. Minimum dose to kill? Time to kill?

Optimize library infection conditions

2-4 initial choices

Optimize viral infection conditions – Usually tried it already to inform cell type selection

Matrix experiment: pre-defined

Optimize for infection rate, but also considering:

- Viral toxicity observed?
- Readout behaves comparably in treated v. untreated cells?

Optimize library infection conditions

E.g. another variable: spin versus no spin

Statistical assessment – these are quantitative experiments

Infection optimization assessment

Before and after – compare cell viability with versus w/o selection

A good infection result with ORF lentiviruses

96.7% of ORFs yielding greater than 65% infection efficiency

Often optimize these together

A 'rescue' screen: Optimizing drug dose and timepoint

This case: background = stasis by chemotherapeutic, hits = resistance

Best rescue at ~250nm at 96 hrs. Will it work? What else do you need to know?

Raw Data

Many assay endpoint readouts

Cell viability

Cell Titer Glo, Alamar Blue, Imaging

Reporters

Luciferase, GFP

Gene expression

qRT-PCR

L1000 Nanostring

GE-HTS (Luminex)

High Content Imaging

GFP, RFP, antibodies

Morphology, intensity, localization

Low Content "Imaging"/FACS

GFP, antibodies

Intensity

Many optimization issues are specific to readout

Always need adequate S/N

- Neg. control only ('model' positives?)
- Neg. and pos. control

Beware artifacts – spatial effects within plates

Edge effects can be reduced by optimizing the seeding, incubation, media conditions

Beware artifacts – 'batch' effects

Assessment of the overall optimized conditions

Replicate reproducibility:

Must be tight compared to effect size sought

Distribution of test wells, negative controls, positive controls

Pooled Screening

Multiplexed 'pooled' screens

POOLED shrna Screens

No robotics 100,000 shRNAs

- VERY LARGE GENE SETS
- LONG TIME COURSE ASSAYS
- MANY CONDITIONS: drug doses, time points, cell types etc.

B. Luo et. al. PNAS 105 (51) 20380 (2008)

Pooled Screening Approach

Assay Development: Many variables - many may matter!

Set up model e.g. seed cells and prepare for perturbation Introduce genetic perturbation
e.g. infect with lentiviruses carrying shRNAs or ORFs

Model the biology

e.g. - challenge with a virus

- stimulate with a cytokine
- treat with chemotherapeutic

Bulk culture conditions

Culture conditions?

Infection conditions, timing?

Timeline, treatments, media changes, passaging?

Endpoint measurements

- Isolate hit cells
- 'Deconvolute' to find enriched/depleted shRNAs or ORFs

FACS gates, if employed

Key: Must separate out cells with hit phenotype

- Every perturbed cell has mixed neighbors: Only a cell-autonomous effect will enrich or deplete cells carrying the shRNA/ORF that causes it.
- Need to physically separate 'hit' cells from others

chambers to look for enrichment Cell surface marker with phenotype of interest Intracellular marker (fixed) Reporter gene

Proliferation

- **FACS**
- 'Migration' harvest location

Processing of samples for Illumina deconvolution

Isolate cells enriched for
phenotype of interest

→ Process enough cells to
maintain representation

Isolation of gDNA

PCR of hairpin from gDNA with samples barcoded during PCR process
→ Amplify from sufficient gDNA to maintain representation

Illumina Sequence
Run sufficient lanes to
maintain representation
of initial infection

'Deconvolute' with PoolQ

Pool all samples from same experiment into a single mix for Illumina.

Gel purify

Representation considerations

Use enough cells, or you'll get fooled

At least 200 cells per shRNA (or ORF)

- 1. An average some shRNAs start out under-represented
- 2. Need good statistics on each shRNA
- Some will always become enriched by chance.
- How can you tell which are enriched by chance vs. due to their activity in the cells?

Non-hit shRNAs

Hit shRNAs

A "bottleneck" anywhere in the process increases random enrichments/depletions, e.g.

- Infect insufficient cell number
- Passage insufficient cell number

FACs based Pooled Screens Lessons learned from case studies

- 1. Orthopox viral entry/infection (Claire Marie Fillone Connor Lab)
- 2. AML Differentiation (David Sykes Scadden Lab)
- 3. Fetal Hb switch (Dan Bauer Orkin Lab)

Screen 1: Orthopox viral Entry/Infection

- The orthopoxvirus family includes smallpox (Variola), Monkeypox and Vaccinia
- Smallpox was eradicated using vaccinia, but is still considered a bioterror threat
- Vaccinia is an easily manipulated model virus used under BSL-2 conditions
- Monkeypox is currently emerging in Africa
 - Imported into the United States in 2003
 - Case fatality from 1-10%

Reporter virus testing on the BU MoFlo

Virus expressing Venus

A549 uninfected v. LV MOI 10

Some overlap of Venus and Venus populations

Virus expressing viral protein **FUSED** to Venus

A549 uninfected v. A4L-V MOI 10

Separation of Venus⁻ and Venus⁺ populations

VACV A4L-Venus Test Sort

Comparison of 4 Replicates of Sort 90K shRNA Pool

- Pool #1: 3.71x10⁷ total, 23,209 sorted
- Pool #2: 3.48x10⁷ total, 18,457 sorted
- Pool #3: 1.02x10⁸ total, 220,694 sorted
- Pool #4: 5.68x10⁷ total, 28,096 sorted

Capturing this info can help in flagging replicates in downstream analysis

Primary screen replicate analysis Choosing genes for follow-up

- Identified shRNA rank list for each pool, and a union of all 4 pools (5 'pools')
- Used GENE-E 2nd Best Rank to nominate genes from ranked hairpin list
- Comparison of number of genes found in multiple pools

- Chose 170 genes (10 re-array plates)
 - All genes in 3 or 4 pools
 - 20 genes from top of each individual pool
 - 5 genes nominated by having top hairpin in each pool
 - 25 genes in 2 pools, excluding the sum 'pool'

VACV shRNA Compiled Data

For a very stringent selection screen, allow for a big false negative rate, i.e. don't ask for as much consistency across trials

Follow up confirmation rate (Array-based Screen)

Very stringent criteria for 'confirmation'.

- To be considered inhibited, need to block 50% fluorescence expression
- To be considered a hit, the genes must inhibit in more than one replicate
 - Have 2 or more hairpins per gene

Hits: 32 of 170 genes fit this description (~20%)

What's this hit rate mean?
Not much in itself:
Don't get hung up on % hit values that use arbitrary thresholds.

Screen 2: AML model: HoxB8-induced differentiation block

Flow cytometry selection of hit cells

Conditions

- Optimize for time point for flow following infection: Collect day 4, 5, or 6
 - Replicate 1: Day 4, 5
 - Replicate 2: Day 6
 - Replicate 3: Day 4, 5, 6
- 200 shRNAs per cell

Clustering of indexed Illumina reads

Top hit makes sense, strong miRNA signal too: screen worked!

		Counts per million		r million	Fold
Rank	Symbol	Sequence	Unsorted	GFP+	Enrichment
1	Hoxb8	UAGCCGUAGAAGUUGCCGUUUU	0.1	2185.1	36490
2	Traf5	AAU UCUCUC AGAGACCGGUUUU	1.1	2118.8	1981
3	LOC434093	GUGUUGACUAUACAGCCGUUUU	1.0	476.7	482
4	1810035L1	GUUCUCUCAGCUCACUCGUUUU	1.2	548.2	444
5	LOC381842	GUCUCUUACUGGUAGGUUUU	110.8	22186.2	200
6	Itgax	UUCUCUCUGCAUGUGUGGUUUU	39.3	7362.4	188
7	Ehbp1	AUUUGG CUUUGUGAUAGCUUUU	36.3	6245.2	172
8	Eraf	AUUUGG CUAGAAACUGGCUUUU	39.6	6778.0	171
9	Oprd1	A AUUUGG UGUACCGGACGUUUU	8.2	1323.5	161
10	Slc2a8	AU UCUCU CUUCUACCUGGUUUU	11.4	1804.0	159
102	Hoxb8	ACUGCUGGGAAACUUGUCUUUU	22.6	593.7	26

3. A two-color FACS screen:

Sort on both Adult and Fetal hemoglobin level. Screen for high OR low ratios.

NF1 loss as a mechanism of resistance to selective RAF and MEK inhibition

- 1. Melanoma cell lines with BRAF V600E mutation are sensitive to PLX 4720
- 2. Perform genome-wide shRNA pooled screen in the presence of a BRAF inhibitor to identify genes that cause resistance to cells treated with drug

Modifier screens need to determine cell line choice, correct dosage, and timepoints as main variable

Some pooled screen take-home lessons

- Need very low background of 'hit' cells
- 2. Avoid any BOTTLENECK in cell numbers in any pooled screen.
- Even w/o positive control, can look for existence of a hit population by increase in hit cells w library treatment vs. control shRNA.
- 4. Replicates do not have to cluster if screen is sub-saturating? (I.e. not enough representation of hits) Need larger number of replicates (ie just more cells)
- 5. Primary cell screens are possible, but may be more difficult
- 6. For FACS-based screens, if using a florescent reporter and fixing cells, fuse report to endogenous protein to avoid leakage
- 7. For FACS-based screens, ensure sort maintains representation (avoid long sorts where cells can clump) (see #2)
- 8. For FACS-based screens, re-sorting (Sort-expand-Sort) did not increase signal over background (one test)

Assay Development: Many variables many may matter!

Set up model e.g. seed cells and prepare for perturbation

Cell numbers, culture conditions? Introduce genetic <u>perturbation</u> e.g. infect with lentiviruses carrying

shRNAs or ORFs

Model the biology

e.g. - challenge with a virus

- stimulate with a cytokine
- treat with chemotherapeutic

Infection conditions, timing?

Timeline, treatments, media changes, passaging?

Endpoint measurements e.g. platereader, imaging, FACS

Reagents/protocols, instruments/settings, timeline