Functional Genomic Screens in the RNAi Platform

Broad Institute of MIT and Harvard

Functional Genomic Screens in the RNAi Platform

'Functional genomics'

→ Gene function in context.... in cells

"What to expect if you go down this road"

- I. Overview
- II. Perturbations
- III. Planning a screen the idea & all the key ingredients
- IV. Optimization/Execution
- V. Data analysis
- VI. Gene function, putting it all together: "Figures 3-7"

What is 5q-syndrome? - myelodisplasia

5q-syndrome patients: Severe anemia Reduced erythroid development Normal numbers of megakaryocyte Hypolobated micromegakaryoctes Normal/elevated platelets Normal/low neutrophils Occasional progression to AML 5916:6 Distinct haematological disorder with deletion of long arm of No. 5 chromosome van Den Berghe, *Nature*, **251**, 437-438 **(1974)** 5931+2 5931+3 Deletion (1.5Mb) 5933+1 40 genes, which one? 5935+1 5435+2 (Haploinsufficiency)

A 40-year hunt among 40 genesbut no luck

Ben Ebert, Todd Golub Nature 2008

Focused screen of common deleted region

A key to screen design: a model for disease Hemopoetic progenitor differentiation - increased megakaryocyte/erythrocyte ratio

Hairpin targets

RPS14 overexpression 'reverts' 5q- patient cells

Ben Ebert, Todd Golub

Knock down genes and monitor flu infection levels in U2OS cells

IFIT3 was noted as an interferon-induced gene.

Follow-up shows IFITM family are all flu restriction factors.

Brass, Farzan, Elledge Cell 2009

Systematic gene function discovery:

- Perturb each gene and look for change in cell behavior
- Knockdown, overexpression, re-engineer, etc.

Functional genomics

→ Probe function by perturbing gene activity in cells

It can be complicated...

- Multiple functions per gene
- Multiple isoforms, protein modifications
- Context-dependence functions:
 cell type, cell state, environment

Cell-based loss-of-function screens Human and mouse

Reagents to perturb every gene

Good tissue culture model

Good readouts of cell state

Screen projects

Define project

- Define question: "Find genes that do XYZ"
- Define biological model system
- Define assays to read out phenotypes of interest

Primary screen – feasibility and execution

- Optimize model system, assay(s); positive and negative controls
- Select gene set to interrogate
 Execute pilot and primary screen select hits

Follow up on interesting genes/pathways

- Confirm assay result
- Confirm target gene specificity multiple RNAi reagents, target KD
- Elaborate the biological effects,
 e.g. mechanism generality/context, biomedical sig?

The screen is just one early step of a project

Gene perturbations

Genome-scale in mammalian cells

- RNA interference last 10 years
- Overexpression possible for decades, rare in practice
- Insertional mutagenesis in haploid cells a few years
- Other strategies: (scale varies)

Genome engineering: Zn fingers, TALENS, CRIPR miRNA sponges, antisense

Disease models

Cancer

- Barbie, D. A., P. Tamayo, et al. (2009). "Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1." Nature 462: 108-12.
- Boehm, J. S., J. J. Zhao, et al. (2007). "Integrative genomic approaches identify IKBKE as a breast cancer oncogene." Cell 129: 1065-79.

Anemia

 Ebert, B. L., J. Pretz, et al. (2008). "Identification of RPS14 as a 5q- syndrome gene by RNA interference screen." Nature 451: 335-9.

Osteoporosis

 Jones, D. C., M. N. Wein, et al. (2006). "Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3." Science 312: 1223-7.

Mitochondrial Dysfunction

 Pagliarini, D. J., S. E. Calvo, et al. (2008). "A mitochondrial protein compendium elucidates complex I disease biology." Cell 134: 112-23.

Immunology and systems immunology

- Amit, I., M. Garber, et al. (2009). "Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses." Science 326(5950): 257-63.
- Oberdoerffer, S., L. F. Moita, et al. (2008). "Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL." Science 321: 686-91.

Challenges to the systematic functional annotation of the genome

Cell-based screening:

• Tissue culture model, phenotypic assay

Genetic perturbations issues, for example RNAi:

• Delivery – efficiency, effects

- Gene knockdown effectiveness
- Specificity: Off-target, non-specific effects

- Follow-up bottleneck
- Cost

Partly an 'art' - experience helps a lot!

Publications using the TRC library in direct collaboration or consultation with the Broad RNAi Platform 2006-2010

Amit, I. et al. (2009) "Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses." Science 326: 257-63.

Barbie, D. A. et al. (2009) "Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1." Nature 462: 108-12.

Barretina, J. et al. (2010) "Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy." Nature Genetics 42: 715–721.

Bilodeau, S. et al. (2009) "SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state." Genes & Dev 23: 2484-2489.

Boehm, J. S. et al. (2007) "Integrative genomic approaches identify IKBKE as a breast cancer oncogene." Cell 129: 1065-79.

Ebert, B. L. et al. (2008) "Identification of RPS14 as a 5q-syndrome gene by RNA interference screen." Nature 451: 335-9.

Eguchi, J. et al. (2008) "Interferon regulatory factors are transcriptional regulators of adipogenesis." Cell Metab 7: 86-94.

Firestein, R. et al. (2008) "CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity." Nature 455: 547-51.

Frohling, S. et al. (2007) "Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles." Cancer Cell 12: 501-13.

Gohil, V. M. et al. (2010) "Mitochondrial and nuclear genomic responses to loss of LRPPRC expression." J Biol Chem 285: 13742-7.

Johannessen, C.M. et al. (2010) "COT drives resistance to RAF inhibition through MAP kinase pathway reactivation." Nature 468:968–972

Jones, D. C. et al. (2006) "Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3." Science 312: 1223-7.

Jones, T.R. et al. (2009) "Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. "PNAS 106:1826-31.

Kagey, M.H. et al. (2010) "Mediator and cohesin connect gene expression and chromatin architecture." Nature 467: 430–435.

Kim, S. Y. (2010) "CK1epsilon is required for breast cancers dependent on beta-catenin activity." PLoS One 5: e8979.

Moffat, J. et al. (2006) "A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen." Cell 1246: 1283-98.

Oberdoerffer, S. et al. (2008) "Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL." Science 321: 686-91.

Pagliarini, D. J. et al. (2008) "A mitochondrial protein compendium elucidates complex I disease biology." Cell 134: 112-23.

Pavri, R. et al. (2010) "Activation-Induced Cytidine Deaminase Targets DNA at Sites of RNA Pol. II Stalling by Interaction with Spt5." Cell 143:122-133.

Perocchi F. et al. (2010) "MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake." Nature, 467: 291-6.

Root, D. E. et al. (2006) "Genome-scale loss-of-function screening with a lentiviral RNAi library." Nat Methods 3: 715-9.

Sancak, Y. et al. (2007) "PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase." Mol Cell 25: 903-15.

Savina, A. et al. (2009) "The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8(+) dendritic cells." Immunity 30: 544-55.

Scholl, C. et al. (2007) "The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis." J Clin Invest 117: 1037-48.

Scholl, C. et al. (2009)" Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. "Cell 137:821-34.

Smolen, G.A. et al. (2010) "A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration" Genes & Dev. 24: 2654-2665.

Sugiana, C.et al. (2008) "Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease." AmJHumGenet 83:468-78

Vasudevan, K. M. et al. (2009) "AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer." Cancer Cell 16: 21-32.

Vicent, S. et al. (2010) "Wilms tumor 1 regulates KRAS-driven oncogenesis and senescence in mouse and human models." J Clin Invest 120:3940–3952.

Yang, W. S. et. al. (2008) "Inhibition of casein kinase 1-epsilon induces cancer-cell-selective PERIOD2-dependent growth arrest." Genome Biol 9: R92.

Zhang, Q. et al. (2009) "Control of cyclin D1 and breast tumorigenesis by the EgIN2 prolyl hydroxylase." Cancer Cell 16(5): 413-24.

RNAi Platform – what do we do?

- Genomic screening projects fct. genomics expertise
- R & D in functional genomics tools, strategies
- Infrastructure for maintaining, distributing, employing gene perturbation reagents
- Libraries, reagents creation

The Broad RNAi Platform

~35 People

Production of shRNA + ORF libraries; others

Screening collaborations

Informatics and computational biology

Research on functional genomics methods; design of new reagents

Researchers in Broad community

The research world

RNAi Platform

Get information at our Broad site: https://iwww.broadinstitute.org/rnai/db/

Come see us about:

- Screen project ideas gene discovery
- How to use gene perturbation tools for non-screen based projects
- Projects to investigate new strategies, technologies for fct. genomics